I. KARMAŞIK SAYILAR KÜMESİ
Tanım
sayısına sanal sayı (imajiner sayı) birimi denir. ve
ile gösterilir.
|
Uyarı
a, b pozitif gerçel sayı ve
x, y negatif gerçel sayı olmak üzere,
|
A. i NİN KUVVETLERİ
olmak üzere,
i0 = 1 dir.
i1 = i dir.
i2 = –1 dir.
i3 = i2 × i1 = (–1) × i = –i dir.
i4 = i2 × i2 = (–1) × (–1) = 1 dir.
i5 = i4 × i1 = 1 × i = i dir.
Görüldüğü gibi i nin kuvvetleri ; 1, i, –1, –i değerlerinden birine eşit olmaktadır.
Sonuç
Sanal sayı biriminin (i nin) kuvveti x olsun. x tam sayısı 4 ile bölündüğünde,
kalan 0 ise, ix ifadesinin eşiti 1,
kalan 1 ise, ix ifadesinin eşiti i,
kalan 2 ise, ix ifadesinin eşiti –1,
kalan 3 ise, ix ifadesinin eşiti –i dir.
Buna göre, n tam sayı olmak üzere,
i4n= 1,
i4n+1 = i,
i4n+2 = –1,
i4n+3 = –i dir.
|
Tanım
a ve b birer reel (gerçel) sayı ve olmak üzere,
z = a + bi şeklinde ifade edilen z sayısına karmaşık (kompleks) sayı denir.
Karmaşık sayılar kümesi ile gösterilir. Buna göre,
z = a + bi karmaşık sayısında;
a ya karmaşık sayının reel (gerçel) kısmı,
b ye karmaşık sayının imajiner (sanal) kısmı denir.
z = a + bi ise
Re(z) = a
İm(z) = b
şeklinde gösterilir.
|
Uyarı
Her reel (gerçel) sayı imajiner kısmı 0 (sıfır) olan bir karmaşık sayıdır.
Buna göre, karmaşık sayılar kümesi reel sayılar kümesini kapsar. Yani, dir.
|
B. İKİ KARMAŞIK SAYININ EŞİTLİĞİ
Reel kısımları ve imajiner kısımları kendi aralarında eşit olan iki karmaşık sayı birbirine eşittir.
Kural
0 yorum:
Yorum Gönder